【个人简介】
Chen Hongming (陈红明) ,男,1998年于中国科学院化工冶金研究所(现过程工程研究所)获得计算化学博士学位。1998-2000年期间,在德国拜耳公司Wuppertal药物研发中心从事博士后研究工作。他在2001年加入阿斯利康制药公司瑞典哥德堡的研发中心,从事计算化学和新药开发工作长达18年,曾在先导化合物发现部门担任主任研究员(Principal Scientist)职位。他于2019-2021年期间在生物岛实验室担任研究员(Principal Investigator)并组建人工智能与药物设计研发团队,现任广州国家实验室研究员,中国生物信息与药物发现专委会副主任,入选广东省人才计划,广州黄埔精英人才。他的主要研究兴趣在计算化学,化学信息学,人工智能/机器学习等方面,已发表学术论文和专利100余篇。目前担任Molecular Informatics 杂志学术咨询委员会委员和Artificial Intelligence in the Life Sciences杂志编委委员(2018)、J. Chemoinformatics杂志编委委员(2023)。
【联系邮箱】chen_hongming@gzlab.ac.cn
【研究方向类别】
1、学术学位:药学化学
【具体研究方向】
【主要科研项目】
国家重大科技专项项目:
《基于人工智能技术的抗呼吸道病毒药物筛选及先导化合物的发现》
【所获荣誉和奖励】
序号 | 获奖项目名称 | 授奖单位及国别 |
1 | 外国专家重点支撑计划 | 国家级 |
2 | 广东省人才计划 | 省级 |
3 | 珠江计划-领军人才 | 省级 |
4 | 高层次人才引进计划 | 市级 |
5 | 广州黄埔精英人才 | 市级 |
【主要论文及著作(代表性)】
1. Y Lu, Q Yang, T Ran, G Zhang, W Li, P Zhou, J Tang, M Dai, J Zhong, H Chen, P He, A Zhou, B Xue, J Chen, J Zhang, S Yang, K Wu, X Wu, M Tang, W K. Zhang, D Guo, X Chen*, H Chen*, J Shang*,Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19,Nature Communications,2024,15:10169.
2. H Zhang, J Huang, J Xie, W Huang, Y Yang, M Xu, J Lei, H Chen,GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning,J Chem. Inf. Model. 2024, 10.1021/acs.jcim.3c01700
3. M Xu, H Chen, Tree-Invent: A Novel Multipurpose Molecular Generative Model Constrained with a Topological Tree, J Chem. Inf. Model. 2023, 2023, 63, 22, 7067–7082
4. Q Chen, H Sun, H Liu, Y Jiang, T Ran, X Jin, X Xiao, Z Lin, H Chen, Z Niu, An Extensive Benchmark Study on Biomedical Text Generation and Mining with ChatGPT, Bioinformatics, 2023, btad557
5. B Li, T Ran,H Chen,3D based generative PROTAC linker design with reinforcement learning,Briefings in Bioinformatics, 2023, bbad323
6. B Li, S Su, C Zhu, J Lin, X Hu, L Su, Z Yu, K Liao,H Chen,A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data,J. Cheminf. 2023, 15, 72
7. H Liu, Z Fan, J Lin, Y Yang, T Ran, H Chen,The recent progress of deep-learning-based in silico prediction of drug combination, Drug Discovery Today,2023, 28(7):103625
8. M Tang, B Li, H Chen, Application of message passing neural networks for molecular property prediction, Current Opinion in Structural Biology, in press, 2023, 81:102616
9. Z Yu, Y Kong, B Li, S Su, J Rao, Y Gao, T Tu, H Chen, K Liao, HTE- and AI-assisted development of DHP-catalyzed decarboxylative selenation, ChemComm, 2023, 59, 2935
10. S Song,H Tan,T Ran, F Fang, L Tong, H Chen, H Xie, X Lu, Application of deep generative model for design of Pyrrolo[2,3-d] pyrimidine derivatives as new selective TANK binding kinase 1 (TBK1) inhibitors, European Journal of Medicinal Chemistry, 2023, 247, 115034
11. M Xu, W Huang, M Xu, J Lei, H Chen, 3D Conformational Generative Models for Biological Structures Using Graph Information-Embedded Relative Coordinates, Molecules, 2023, 28, 321
12. Y Tan, L Dai, W Huang, Y Guo, S Zheng, J Lei, H Chen, Y Yang, DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design, J Chem. Inf. Model. 2022, 62, 23, 5907–5917
13. Y. Yang, S. Zheng, S. Su, C. Zhao, J. Xu, H. Chen,SyntaLinker: Automatic Fragment Linking with Deep Conditional Transformer Neural Networks,Chemical Science, 2020, 11, 8312-8322
14. Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, Thomas Blaschke,The rise of deep learning in drug discovery, Drug discovery today, 2018,6,1241-1250
15. Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola Engkvist, Kostas Papadopoulos, Atanas Patronov,REINVENT 2.0: an AI tool for de novo drug design, Journal of chemical information and modeling,2020,10,5918-5922
16. Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jannik Bjerrum, Ola Engkvist, Hongming Chen,A de novo molecular generation method using latent vector based generative adversarial network,Journal of Cheminformatics,2019,12,1-13